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Abstract
We study the mean-field approximation for a general class of quantum Ising
spin states from an information geometrical point of view. The states we
consider are assumed to have at most second-order interactions with arbitrary
but deterministic coupling coefficients. We call such a state a quantum
Boltzmann machine (QBM) for the reason that it can be regarded as a quantum
extension of the equilibrium distribution of a (classical) Boltzmann machine
(CBM), which is a well-known stochastic neural network model. The totality
of QBMs is then shown to form a quantum exponential family and thus can
be considered as a smooth manifold having similar geometrical structures to
those of CBMs. We elaborate on the significance and usefulness of information
geometrical concepts, in particular the e- and m-projections, in studying the
naive mean-field approximation for QBMs. We also discuss the higher-order
corrections to the naive mean-field approximation based on the idea of the
Plefka expansion in statistical physics. We elucidate the geometrical essence
of the corrections and provide the expansion coefficients with expressions in
terms of information geometrical quantities. Here, one may note this work as
the information geometrical interpretation of (Plefka T 2006 Phys. Rev. E 73
016129) and as the quantum extension of (Tanaka T 2000 Neural Comput. 12
1951–68).

PACS numbers: 02.40.−k, 03.67.−a, 05.30.−d, 02.30.Mv, 05.50.+q,
75.10.Jm

1. Introduction

In many areas of physics, information theory and other related areas, one often encounters
the calculation of quantities such as expectations and correlations of a system with respect
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to a probability distribution or a density operator with a complicated structure. This is, in
general, computationally a very time-consuming problem since the required time increases
exponentially with the number of elements in the system irrespective of being classical or
quantum. Thus, it is inevitable to employ an approximation method to get rid of this difficulty.
On the other hand, information geometry as a new field has been found very useful in
understanding the deep mathematical structures in the interface of many fields.

Mean-field approximation, originated in statistical physics, has been widely used both in
classical and quantum physics as well as in other fields such as information theory, statistics,
etc. The basic idea of the mean-field approximation is to use a simple tractable family of
probability distributions (or density operators) to calculate characteristic quantities related to
a probability distribution (or a density operator) including mutual interactions. In particular,
Tanaka [4, 5] has studied the mean-field approximation for a general class of classical Ising spin
models which are identified with the equilibrium distributions of stochastic neural networks
called Boltzmann machines (or classical Boltzmann machines (CBMs) in this paper) from the
viewpoint of information geometry; see also [6, 7] for related works.

Motivated by the above works, we study in this paper the mean-field approximation for
a class of quantum Ising spin states, which correspond to the equilibrium distributions of
CBMs and are called quantum Boltzmann machines (QBMs), from a viewpoint of quantum
information geometry. Similar to CBMs, each QBM has two kinds of real-valued parameters,
namely h, the thresholds in neural network contexts and the external fields in physical contexts,
and w, the coupling coefficients (to be defined in section 2). We remark that these parameters
are arbitrary but deterministic in our model, while the coupling coefficients are usually
considered to be random variables in case of spin glasses. Here, it should be noted that
the QBMs, at present, lack any notions corresponding to the stochastic dynamics of CBMs
which determine their equilibrium distributions. This means that our approach does not
suggest how to quantize the neural aspects of CBMs, and we simply introduce QBMs as a
general class of quantum states.

We regard the set of QBMs as a quantum exponential family, a smooth manifold which
has a similar form as an exponential family in statistics, on which a Riemannian metric and
a couple of affine connections are naturally defined. These differential geometrical structures
turn out to have a characteristic property called the dually flatness and are closely related to
the quantum relative entropy. Using this setup, we elucidate the geometrical essence of the
naive mean-field approximation for the QBMs as well as the higher-order extensions based on
the idea of the Plefka expansion.

The structure of this paper is as follows. In the next section, we define QBMs
corresponding to the CBMs. Section 3 introduces classical and quantum exponential families.
It is shown that the manifolds of QBMs and product states form quantum exponential families.
In sections 4 and 5 we describe some relevant concepts from quantum information geometry.
We devote section 6 to derive the naive mean-field equation for QBMs using information
geometrical notions. Section 7 discusses the higher-order mean-field approximations for
QBMs using a Taylor expansion of the quantum relative entropy. Furthermore, we elaborate
on the unified view of the naive and higher-order mean-field approximations. Discussion and
conclusions in section 8 terminate the paper.

2. Quantum spin states and QBMs

Let us consider an n-element system of quantum Ising spins. Each element is represented
as a quantum bit (qubit) or quantum spin- 1

2 with the local Hilbert space C
2, and the

2
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n-element system corresponds to H ≡ (C2)⊗n. Let S be the set of faithful states on H;
S = {ρ | ρ = ρ∗ > 0 and Tr ρ = 1}. An element of S is said to have at most kth-order
interactions if it is written as

ρθ = exp

⎧⎨
⎩

∑
i,s

θ
(1)
is Xis +

∑
i<j

∑
s,t

θ
(2)
ijstXisXjt + · · ·

+
∑

i1<···<ik

∑
s1...sk

θ
(k)
i1...iks1...sk

Xi1s1 · · · Xiksk
− ψ(θ)

⎫⎬
⎭

= exp

⎧⎨
⎩

k∑
j=1

∑
i1<···<ij

∑
s1...sj

θ
(j)

i1...ij s1...sj
Xi1s1 · · ·Xij sj

− ψ(θ)

⎫⎬
⎭ (1)

with

ψ(θ) = log Tr exp

⎧⎨
⎩

k∑
j=1

∑
i1<···<ij

∑
s1...sj

θ
(j)

i1...ij s1...sj
Xi1s1 · · · Xij sj

⎫⎬
⎭ , (2)

where Xis = I⊗(i−1) ⊗Xs ⊗ I⊗(n−i), θ = (
θ

(j)

i1...ij s1...sj

)
. Here, I is the identity matrix on H and

Xs for s ∈ {1, 2, 3} are the usual Pauli matrices given by

X1 =
(

0 1
1 0

)
, X2 =

(
0 −i
i 0

)
, X3 =

(
1 0
0 −1

)
.

Letting Sk be the totality of states ρθ of the above form, we have the hierarchy S1 ⊂ S2 ⊂
· · · ⊂ Sn = S. Note that S1 is the set of product states ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn.

Our main concern in the present paper lies in approximating an element of S2 by a
product state in S1, so the set S2 is of special importance. In the sequel, we let his = θ

(1)
is and

wijst = θ
(2)
ijst to rewrite (1) for k = 2 as

ρh,w = exp

⎧⎨
⎩

∑
i,s

hisXis +
∑
i<j

∑
s,t

wijstXisXjt − ψ(h,w)

⎫⎬
⎭ , (3)

where h = (his) and w = (wijst ). The real dimension of S2 is 3n(3n − 1)/2 which gives the
number of parameters to specify a density operator ρh,w.

A classical counterpart of the state (3) is the probability distribution for binary sequences
x = (x1, x2, . . . , xn) ∈ {−1, +1}n of the form

ph,w(x) = exp

⎧⎨
⎩

∑
i

hixi +
∑
i<j

wij xixj − ψ(h,w)

⎫⎬
⎭ , (4)

where h = (hi) and w = (wij ). This is known to appear as the equilibrium distribution of a
stochastic neural network called the Boltzmann machine [1], which is referred to as a CBM in
this paper with C standing for ‘classical’. A CBM consists of a number, say n, of elements that
are connected in some way and is specified by a set of parameters (h,w) = (hi, wij ). Here,
hi ∈ R denotes the threshold value of element i and wij ∈ R denotes the coupling coefficient
between the two elements i and j . Each element i takes a binary value xi ∈ {−1, +1} as its
state, which fluctuates according to a stochastic rule depending on both the parameters (h,w)

and the values of the other elements. This process defines a Markov chain on the product
set {−1, +1}n, whose equilibrium (stationary) distribution is given by (4). Noting that the
correspondence ph,w ↔ (h,w) is one to one, we can, at least mathematically, identify each

3
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CBM with its equilibrium probability distribution. Actually, Tanaka [4, 5] has studied the
mean-field approximation for a distribution of the form (4), calling it a Boltzmann machine.
Correspondingly, an element of S2 of the form (3) is called a quantum Boltzmann machine or
a QBM in this paper (see also [2, 3]), although we have no quantum dynamics corresponding
to the stochastic state change of a CBM at present. Physically, a QBM simply means a general
quantum state for n-fold spins with at most second-order interactions which are arbitrary and
deterministic, not random as in a spin glass.

The elements of S1 are represented as ρh,0 by letting w = 0 in (3). In the sequel, we write
them as

τh̄ = exp

{∑
i,s

h̄isXis − ψ(h̄)

}
(5)

by using new symbols τ and h̄ = (h̄is) when we wish to make it clear that we are treating S1

instead of S2. We have

τh̄ =
n⊗

i=1

exp

{∑
s

h̄isXs − ψi(h̄i)

}
, (6)

where h̄i = (h̄is)s and

ψi(h̄i) = log Tr exp

{∑
s

h̄isXs

}

= log{exp(‖h̄i‖) + exp(−‖h̄i‖)} (7)

with ‖h̄i‖ def=
√∑

s(h̄is)
2. Note that

ψ(h̄) =
∑

i

ψi(h̄i). (8)

3. Quantum exponential families

Let X be a finite set or, more generally, a measurable space with an underlying measure dµ.
When a family of probability distributions on X (probability mass functions for a finite X and
probability density functions for a general (X , dµ)), say M = {pθ | θ = (θ i); i = 1, . . . , m},
is represented in the form

pθ(x) = exp

{
c(x) +

m∑
i=1

θ ifi(x) − ψ(θ)

}
, x ∈ X , (9)

M is called an exponential family. Here, θ i; i = 1, . . . , m are real-valued parameters, c
and fi are the functions on X and ψ(θ) is a real-valued convex function. For instance, the
equilibrium distributions (4) of CBMs form an exponential family. The notion of exponential
family is very important in statistics and information geometry, and is also useful in studying
properties of CBMs with their mean-field approximations. We introduce a quantum version
of this notion in the following.

Let H be a finite dimensional Hilbert space and denote the totality of faithful states on H
by

S = {ρ | ρ = ρ∗ > 0 and Tr ρ = 1}.
4
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Suppose that a parametric family M = {ρθ | θ = (θ i); i = 1, . . . , m} ⊂ S is represented in
the form

ρθ = exp

{
C +

m∑
i=1

θ iFi − ψ(θ)

}
, (10)

where Fi (i = 1, . . . , m) and C are the Hermitian operators and ψ(θ) is a real-valued function.
We assume in addition that the operators {F1, . . . , Fm, I }, where I is the identity operator, are
linearly independent to ensure that the parametrization θ �→ ρθ is one to one. Then M forms
an m-dimensional smooth manifold with a coordinate system θ = (θ i). In this paper, we
call such an M a quantum exponential family1, or QEF for short, with natural (or canonical)
coordinates θ = (θ i). It is easy to see that S is a QEF of dimension (dimH)2 − 1. Note also
that for any 1 � k � n the set Sk of states (1) forms a QEF, including S2 of QBMs and S1 of
product states.

If we let

ηi(θ)
def= Tr[ρθFi], (11)

then η = (ηi) and θ = (θ i) are in one-to-one correspondence. That is, we can also use η

instead of θ to specify an element of M. These (ηi) are called the expectation coordinates
of M.

In particular, the natural coordinates of S2 are given by (h,w) = (his, wijst ) in (3), while
the expectation coordinates are (m,µ) = (mis, µijst ) defined by

mis = Tr[ρh,wXis] and µijst = Tr[ρh,wXisXjt ]. (12)

On the other hand, the natural coordinates of S1 are h̄ = (h̄is) in (5), while the expectation
coordinates are m̄ = (m̄is) defined by

m̄is = Tr[τh̄Xis]. (13)

In this case, the correspondence between the two coordinate systems can explicitly be
represented as

m̄is = ∂ψi(h̄i)

∂h̄is

= h̄is

‖h̄i‖ tanh(‖h̄i‖) (14)

or as

h̄is = m̄is

‖m̄i‖ tanh−1(‖m̄i‖), (15)

where ‖m̄i‖ def= √∑
s(m̄is)2.

4. Metric and affine connections on a state manifold

In classical information geometry [8], a Riemannian metric, called the Fisher metric, and a
one-parameter family of affine connections, called the α-connections (α ∈ R), are canonically
defined on an arbitrary manifold of probability distributions. In particular, the (α = 1)-
connection and the (α = −1)-connection, which are also called the e-connection and
m-connection, respectively, together with the Fisher metric have been shown very useful

1 It should be noted, however, (10) is merely one of the possible definitions of quantum exponential family. Our
definition has the advantage that it is closely related to the quantum relative entropy (30) and is completely analogous
to the classical exponential family from a purely geometrical point of view. On the other hand, it does not fit well to
the framework of quantum estimation theory, which needs another definition of QEF such as that based on symmetric
logarithmic derivatives (see section 7.4 of [8]).

5
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in many problems in statistics and other fields. In the quantum case, on the other hand, we
have infinitely many mathematical equivalents of the Fisher metric and the α-connections
including the e- and m-connections defined on a manifold of quantum states. We introduce, in
the present section, an example of quantum Fisher metric and e-, m-connections, and describe
their properties, mainly following [8]. Our choice of information geometrical structure is
naturally linked with QEF and quantum relative entropy. For general terms of differential
geometry such as manifold, Riemannian metric and affine connection, refer, for example, to
[9].

Let H be a finite dimensional Hilbert space. We consider a d-dimensional parametric
family

M = {ρθ | θ = (θ1, . . . , θd) ∈ �}, � ⊂ R
d

of faithful states on H. Then, θ = (θ i); i = 1, . . . , d can be considered as a coordinate system
and M becomes a submanifold of the manifold of faithful states S on H. In the following,
we discuss the information geometrical structure of M including the case M = S. As a first
step, a Riemannian metric g = [gij ] is defined on M by

gij (θ) = g(∂i, ∂j ), where ∂i
def= ∂

∂θ i

=
∫ 1

0
Tr

[
ρλ

θ (∂i log ρθ )ρ
1−λ
θ (∂j log ρθ )

]
dλ

= Tr[(∂iρθ )(∂j log ρθ )]. (16)

This is a quantum version of the Fisher information metric and is called the BKM (Bogoliubov–
Kubo–Mori) metric. Next, two torsion-free affine connections, the exponential connection (or
e-connection for short) ∇(e) and the mixture connection (or m-connection for short) ∇(m) are
defined on M as follows:



(e)
ij,k(θ)

def= g
(∇(e)

∂i
∂j , ∂k

) = Tr[(∂i∂j log ρθ )(∂kρθ )] (17)

and



(m)
ij,k(θ)

def= g
(∇(m)

∂i
∂j , ∂k

) = Tr[(∂i∂jρθ )(∂k log ρθ )], (18)

where g is the BKM metric. Note that both ∇(e) and ∇(m) are mappings (covariant derivatives)
which map two vector fields X, Y to ∇(e)

X Y and to ∇(m)
X Y , respectively. The coefficients 


(e)
ij,k

give a coordinate representation of the connection ∇(e) relative to the metric g, while 

(e)k
ij

defined by ∇(e)
∂i

∂j = ∑
k 


(e)k
ij ∂k purely represents ∇(e). They are related to each other by



(e)
ij,k = ∑

l 

(e)l
ij gkl . Similarly, we have 


(m)k
ij for ∇(m) such that ∇(m)

∂i
∂j = ∑

k 

(m)k
ij ∂k and



(m)
ij,k = ∑

l 

(m)l
ij gkl .

These two connections ∇(e) and ∇(m) are dual with respect to the BKM metric (16) in the
sense that, for any vector fields X, Y,Z,

Xg(Y,Z) = g
(∇(e)

X Y, Z
)

+ g
(
Y,∇(m)

X Z
)
, (19)

or equivalently in the component form

∂igjk = 

(e)
ij,k + 


(m)
ik,j . (20)

This kind of duality for affine connections plays a key role in the classical and quantum
information geometry. Another notable relation between the two connections is



(m)
ij,k − 


(e)
ij,k = Tijk, (21)

6
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where

Tijk(θ)
def= 2 Re

∫ ∫
0�ν�λ�1

Tr
[
ρν

θ (∂i log ρθ )ρ
λ−ν
θ (∂j log ρθ )ρ

1−λ
θ (∂k log ρθ )

]
dν dλ. (22)

Let us now consider the case when M is a QEF (10) with natural coordinates θ = (θ i).
It is then easy to check from (17) that the coefficients 


(e)
ij,k or 


(e)k
ij of the e-connection are

all zero. In the context of differential geometry, this means that M is flat with respect to
the connection ∇(e) (e-flat, for short) and θ = (θ i) forms an affine coordinate system for
∇(e) (e-affine coordinate system, for short). On the other hand, the coefficients 


(m)
ij,k of the

m-connection do not vanish with respect to the natural coordinates θ = (θ i). However, one
of the remarkable consequences of the duality (19) is that, if one of the two connections ∇(e)

and ∇(m) is flat, then the other is also flat, which is referred to as the dually flatness of the
manifold with respect to the information geometrical structure (g,∇(e),∇(m)). In the present
case, the connection coefficients of ∇(m) with respect to the expectation coordinates η = (ηi)

defined by (11) turn out to identically vanish. This means that M is m-flat with an m-affine
coordinate system (ηi). Moreover, we have

g

(
∂

∂θ i
,

∂

∂ηj

)
= δ

j

i (=1 if i = j, 0 otherwise) (23)

and

ηi = ∂ψ

∂θi
, θ i = ∂φ

∂ηi

, (24)

where ψ given in (10), is regarded as a function M → R by ψ(ρθ) = ψ(θ), and φ : M → R

is defined by the relation

φ(ρ) + ψ(ρ) =
∑

i

ηi(ρ)θ i(ρ), ∀ ρ ∈ M. (25)

Note that equation (14) is an example of the first equation in (24). It can also be shown that

φ(ρ) = −Tr[ρC] − S(ρ), (26)

where S(ρ)
def= −Tr[ρ log ρ] is the von Neumann entropy. In particular, for the QEF Sk of

states (1), we have C = 0 and hence φ(ρ) = −S(ρ). We note that the existence of m-affine
coordinates η = (ηi) and functions ψ, φ satisfying the relations (23), (24) and (25) is ensured
as a general property of the dually flat space (see theorem 3.6 in [8]), although it is not difficult
to directly verify these relations for a QEF (10).

Finally, let us rewrite (23) into a form which will be useful in later arguments. Noting
that (23) is written as

g

(
∂

∂θ i
,

∂

∂ηj

)
= ∂ηi

∂ηj

(27)

and that
{(

∂
∂ηj

)
ρ

}
form a basis of the tangent space Tρ(M), we have

g

((
∂

∂θ i

)
ρ

, ∂ ′
)

= ∂ ′ηi ∀ ∂ ′ ∈ Tρ(M). (28)

Similarly, we have

g

((
∂

∂ηi

)
ρ

, ∂ ′
)

= ∂ ′θ i ∀ ∂ ′ ∈ Tρ(M), (29)

although we use only (28) in this paper.

7
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5. Geometry of quantum relative entropy

In this section, we focus on the quantum relative entropy

D(ρ‖σ)
def= Tr[ρ(log ρ − log σ)] (30)

for two density operators ρ, σ ∈ M and describe its properties related to the dually flat
structure (g,∇(e),∇(m)) of a QEF M as the continuation of the previous section. First, we
note that the relation

D(ρ‖σ) = φ(ρ) + ψ(σ) −
∑

i

ηi(ρ)θ i(σ ) (31)

holds for any ρ, σ ∈ M with ψ and φ defined in (24) and (25). From this, we have

D(ρ‖σ) + D(σ‖τ) − D(ρ‖τ) =
∑

i

{ηi(ρ) − ηi(σ )}{θ i(τ ) − θ i(σ )}. (32)

Moreover, it can be shown that (32), with the positivity

D(ρ‖σ) � 0, D(ρ‖σ) = 0 iff ρ = σ, (33)

completely characterizes the quantum relative entropy D.
Let us clarify the geometric meaning of the right-hand side of (32). In general, given a

coordinate system ξ i and an affine connection ∇ with coefficients 
k
ij , a geodesic with respect

to ∇ is defined by the second-order ordinary differential equation ξ̈ k +
∑

i,j 
k
ij ξ̇

i ξ̇ j = 0. If,
in addition, ξ i is an affine coordinate system with respect to a flat ∇, the equation becomes
ξ̈ k = 0 or equivalently ξ i

t = tξ i
0 + (1 − t)ξ i

1. In particular, an e-geodesic in the QEF (10) is
given by

θ i
t = tθ i

0 + (1 − t)θ i
1. (34)

This turns out to be equivalent to

log ρt = t log ρ0 + (1 − t) log ρ1 − ψ(t),

where ψ(t) is the normalization constant. In other words, an e-geodesic of a QEF is itself a
one-dimensional QEF. On the other hand, an m-geodesic is represented as

ηti = tη0i + (1 − t)η1i . (35)

If we consider the case M = S, the m-geodesic can be written as

ρt = tρ0 + (1 − t)ρ1. (36)

Such a family of states {ρt } is called a (one dimensional) mixture family, which is related to
the origin of the name ‘mixture connection’, but note that (35) is not generally represented as
(36) unless M = S.

Let γ : [0, 1] → M be an m-geodesic such that γ (0) = σ, γ (1) = ρ and δ : [0, 1] → M
be an e-geodesic such that δ(0) = σ, δ(1) = τ . Then, from (34) and (35) we obtain

γ̇ (0) =
∑

i

{ηi(ρ) − ηi(σ )}
(

∂

∂ηi

)
σ

∈ Tσ (M) (37)

and

δ̇(0) =
∑

i

{θ i(τ ) − θ i(σ )}
(

∂

∂θ i

)
σ

∈ Tσ (M). (38)

Hence, from (23) we have

g(γ̇ (0), δ̇(0)) =
∑

i

{ηi(ρ) − ηi(σ )}{θ i(τ ) − θ i(σ )} (39)

8
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which coincides with the right-hand side of (32). We thus obtain the following theorem:

Theorem 1 (Pythagorean relation). Let ρ, σ and τ be three points in the manifold M such
that the m-geodesic connecting ρ and σ is orthogonal at σ to the e-geodesic connecting σ and
τ with respect to the BKM Riemannian metric. Then, the generalized Pythagorean relation

D(ρ‖σ) + D(σ‖τ) = D(ρ‖τ) (40)

holds.

Next, we define the m- and e-projections. Let M be a QEF of the form (10) and N be
a smooth submanifold of M. For an arbitrary point ρ ∈ M, let D(ρ‖·)|N be a function on
N defined by N  σ �→ D(ρ‖σ). When this function is stationary (i.e., the derivative is zero
for every direction in N ) at a point σ ∈ N , we say that σ is an m-projection of ρ onto N .
Similarly, when D(·‖ρ)|N is stationary at σ ∈ N , we say that σ is an e-projection of ρ onto
N . Then, we have the following two theorems which are closely related to theorem 1.

Theorem 2. The necessary and sufficient condition for σ to be an m-projection (resp.
e-projection) of ρ onto N is that the m-geodesic (resp. e-geodesic) connecting ρ and σ is
orthogonal to N at σ .

Theorem 3. If N is e-autoparallel (resp. m-autoparallel) in M in the sense that N forms
an affine subspace in e-affine coordinates (θ i) (resp. m-affine coordinates) of M, then an
m-projection (resp. e-projection) is unique and attains the minimum of D(ρ‖·)|N (resp.
D(·‖ρ)|N ).

Finally, we note another property of D for later use. We have the Taylor expansion of
D(ρ‖σ) (see [8], p 55) as

D(ρ‖σ)
def= 1

2

∑
ij

gij (ρ)�θi�θj +
1

6

∑
ijk

hijk(ρ)�θi�θj�θk + · · · , (41)

where �θi def= θ i(σ )−θ i(ρ). Here, the second-order coefficients gij are the components of the
BKM metric and the third-order coefficients hijk are determined from gij and the connection
coefficients by

hijk
def= ∂igjk + 


(e)
jk,i = 


(e)
ij,k + 


(m)
ik,j + 


(e)
jk,i , (42)

where the second equality is due to (20).

6. Naive mean-field approximation and e-, m-projections

Suppose that we are interested in calculating the expectations mis = Tr[ρh,wXis] from given
(h,w) = (his, wijst ). Since the direct calculation is intractable in general when the system
size is large, we need to employ a computationally efficient approximation method. The
mean-field approximation is a well-known technique for this purpose. The simple idea behind
the mean-field approximation for a ρh,w ∈ S2 is to use quantities obtained in the form of
expectation with respect to some relevant τh̄ ∈ S1. Tanaka [4, 5] has elucidated the essence
of the naive mean-field approximation for classical spin models in terms of e-, m-projections.
Our aim is to extend this idea to quantized spin models.

In the following arguments, we regard S2 as a QEF with the natural coordinates
(θα) = (his, wijst ) and the expectation coordinates (ηα) = (mis, µijst ) (see (12)), where
α is an index denoting α = (i, s) or α = (i, j, s, t). First, let us consider the m-projection

9
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onto S1 and show that it preserves the expectations mis . Note that since S1 is e-autoparallel
in S2, the m-projection is unique and attains the minimum of D by theorem 3. Suppose
ρ = ρh,w ∈ S2 is given and τ ∈ S1 be its m-projection. Let γ be the m-geodesic such that
γ (1) = ρ, γ (0) = τ . Then, from (35) we have

ηα(γ (t)) = tηα(ρ) + (1 − t)ηα(τ ), (43)

and, in particular,

mis(γ (t)) = tmis(ρ) + (1 − t)mis(τ ). (44)

Hence, substituting θ i := his, ηi := mis, ∂
′ := γ̇ (0) and ρ := τ into (28) we get

g

((
∂

∂his

)
τ

, γ̇ (0)

)
= dmis(γ (t))

dt

∣∣∣∣
t=0

= mis(ρ) − mis(τ ). (45)

Since Tτ (S1) = span
{(

∂
∂his

)
τ

}
, it follows from (45) and theorem 2 that mis(ρ) = mis(τ ). This

means that the expectation values do not change if we use the m-projection.
Next, we show that the naive mean-field equation is derived by considering e-projection.

Suppose that τ = τh̄ ∈ S1 is an e-projection of ρ = ρh,w ∈ S2 onto S1, and let γ be the
e-geodesic such that γ (1) = ρ, γ (0) = τ . Note that from (34)

dθα(γ (t))

dt

∣∣∣∣
t=0

= θα(ρ) − θα(τ ), (46)

i.e.,

dhis(γ (t))

dt

∣∣∣∣
t=0

= his(ρ) − his(τ ) = his − h̄is (47)

dwijst (γ (t))

dt

∣∣∣∣
t=0

= wijst (ρ) = wijst since wijst (τ ) = 0. (48)

Now, recall that (m̄is) defined by (13) form a coordinate system of S1, so that Tτ (S1) =
span

{(
∂

∂m̄is

)
τ

}
is

. Hence it follows from theorem 2 that, ∀ i, s,

0 = g

(
γ̇ (0),

(
∂

∂m̄is

)
τ

)

=
∑

α

dθα(γ (t))

dt

∣∣∣∣
t=0

g

((
∂

∂θα

)
τ

,

(
∂

∂m̄is

)
τ

)

=
∑

α

dθα(γ (t))

dt

∣∣∣∣
t=0

(
∂ηα

∂m̄is

)
τ

(from (28))

=
∑
j,t

(hjt − h̄j t )
∂mjt

∂m̄is

+
∑
j<k

∑
t,u

wjktu

∂µjktu

∂m̄is

= his − h̄is +
∑

(i<)k,u

wiksum̄ku +
∑

(i>)j,t

wjitsm̄j t

(since mjt = m̄jt and µjktu = m̄jt m̄ku on S1)

= his − h̄is +
∑
j,t

wijst m̄j t ,

where the last equality follows by letting wiist
def= 0 and wijst

def= wjits (i > j). We thus obtain

h̄is = his +
∑
j,t

wijst m̄j t . (49)

10
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Both (14) (or (15)) and (49) together give the naive mean-field equation for QBMs. It should
be remarked that this naive mean-field equation may have several solutions {h̄is} for a given
set of {his, wijst } as in the classical case, which corresponds to the fact that e-projection onto
an e-autoparallel submanifold is not unique in general.

In this section, we have shown some properties of m- and e-projections based on the
geometrical characterization given in theorem 2, but note that the same properties can also be
derived in several different ways; for instance, we can use the relations (24), (25) and (31) for
ψ and φ to derive them.

7. Plefka expansion and the higher-order mean-field approximations

Although the naive mean-field approximation is used extensively as a common tool to compute
characteristic quantities of multi-particle systems, it is necessary to consider higher-order
mean-field approximations to improve the accuracy in some situations. In this section, we
discuss a method to derive higher-order mean-field approximations which utilizes a Taylor
expansion of the quantum relative entropy. This coincides with the so-called Plefka expansion
of the Gibbs potential as pointed out at the end of the section. We elucidate the correspondence
of the coefficients of the Taylor expansion to the information geometrical quantities such as
the metric and the e-, m-connections.

We start the discussion by recalling that the elements of S2 are parametrized as ρh,w by
h = (his) and w = (wijst ). This means that (θα) = (h,w) forms a coordinate system of
the manifold S2. In viewing S2 as a QEF, (h,w) is a natural coordinate system, while the
corresponding expectation coordinate system is given by (ηα) = (m,µ) with m = (mis) and

µ = (µijst ). Let us now define a third coordinate system (ξα)
def= (m,w). The elements of

S2 are then parametrized by (m,w), which we denote by ρ̂m,w to avoid confusion with ρh,w.
Note that

S2 = {ρh,w | (h,w) : free} = {ρ̂m,w | (m,w) : free} (50)

and that

ρ̂m,w = ρh,w ⇐⇒ ∀ i,∀ s,mis = Tr[ρh,wXis]. (51)

For an arbitrarily fixed w, a submanifold of S2 is defined by

F(w)
def= {ρh,w | h : free} = {ρ̂m,w | m : free}. (52)

As a special case we have

F(0) = {ρh,0 | h : free} = {ρ̂m,0 | m : free} = S1

which is the manifold of product states. We see that the family {F(w)}w forms a foliation of
S2 as

S2 =
⋃
w

F(w). (53)

Similarly, for an arbitrarily fixed m we define

A(m)
def= {ρ̂m,w | w : free}
= {ρ ∈ S2 | ∀ i,∀ s,mis = Tr[ρXis]}, (54)

which yields another foliation of S2 as

S2 =
⋃
m

A(m). (55)

11
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Figure 1. Mutually dual foliations of S2. Here, ‘e-a.p.’ and ‘m-a.p.’ stand for ‘e-autoparallel’ and
‘m-autoparallel’, respectively.

These foliations have several special properties. First, for any w,F(w) is defined by
fixing w which is a part of e-affine coordinates (θα) = (h,w) of S2. This implies that F(w)

is e-autoparallel in S2 in the sense mentioned in theorem 3. On the other hand, each A(m) is
m-autoparallel in S2. Furthermore, ∀w,∀m,

F(w) ⊥ A(m) at σ ∈ F(w) ∩ A(m). (56)

To see this, we note that the tangent spaces of F(w) and A(m) at σ are given by

Tσ (F(w)) = span

{(
∂

∂his

)
σ

}
is

(57)

and

Tσ (A(m)) = span

{(
∂

∂µjktu

)
σ

}
jktu

. (58)

The inner product g
(

∂
∂his

, ∂
∂µjktu

)
is a special case of g

(
∂

∂θα , ∂
∂ηβ

)
with α �= β, hence is zero

from (23), which proves (56). These properties mean that {F(w)}w and {A(m)}m jointly give
an example of mutually dual foliations (see figure 1) defined in [8] (pp 75–76). It is now easy
to see from theorem 1 that for any points ρ ∈ A(m) and τ ∈ F(w) with the intersecting point
σ ∈ A(m) ∩ F(w), the Pythagorean relation (40) holds. We also note that, for any w and
m, both F(w) and A(m) are dually flat with respect to their e-, m-connections and the BKM
metrics. This is obvious for F(w) because F(w) itself is a QEF. On the other hand, since
A(m) is m-autoparallel in S2 which is m-flat, we can easily see that A(m) is also m-flat, and
hence is dually flat as mentioned in section 4. Actually, (µijst ) and (wijst ) restricted to A(m)

turn out m-affine and e-affine coordinate systems respectively.
Let us now restate the problem which motivates both the naive mean-field approximation

and its higher-order extension. Given h = (his) and w = (wijst ) arbitrarily, consider the
problem of calculating the expectations Tr[ρh,wXis] or their approximations from (h,w).
From

∀ i,∀ s,
∂

∂mis

D(ρ̂m,w‖ρh,w) = 0 ⇐⇒ D(ρ̂m,w‖ρh,w) = min
m′

D(ρ̂m′,w‖ρh,w)

⇐⇒ ρ̂m,w = argmin
σ∈F(w)

D(σ‖ρh,w) = ρh,w

⇐⇒ ∀ i,∀ s,mis = Tr[ρh,wXis],

12
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Figure 2. Pythagorean relation D(ρ̂m,0‖ρh,w) = D(ρ̂m,0‖ρ̂m,w) + D(ρ̂m,w‖ρh,w).

where the last equivalence follows from (51), we have the expectations mis as the solution of
the equation

∂

∂mis

D(ρ̂m,w‖ρh,w) = 0. (59)

Of course, this method is practical only when the relative entropy D(ρ̂m,w‖ρh,w) is not too
complicated as a function of the variables m = (mis), which cannot be expected in general
when n, the number of elements in the system, is large. On the other hand, if we let w = 0
in the first argument of D(ρ̂m,w‖ρh,w), then the resulting D(ρ̂m,0‖ρh,w) becomes the sum of
simple functions of m = (mis), and hence the equation

∂

∂mis

D(ρ̂m,0‖ρh,w) = 0 (60)

is much more tractable than the original one in (59). When ‖w‖ is sufficiently small so
that D(ρ̂m,w‖ρh,w) is well approximated by D(ρ̂m,0‖ρh,w), the solution of (60) will give a
good approximation for the true expectations. This is nothing but the idea of naive mean-
field approximation. Actually, equation (60) means that ρ̂m,0 is an e-projection of ρh,w onto
F(0) = S1, which turns out to be equivalent to (49) as shown in the previous section.

Now that the accuracy of the naive mean-field approximation depends on how close
the function D(ρ̂m,w‖ρh,w) is to its substitute D(ρ̂m,0‖ρh,w), it is natural to expect that
the approximation can be improved by properly retrieving the difference D(ρ̂m,0‖ρh,w) −
D(ρ̂m,w‖ρh,w) up to a certain order of w. This is the information geometrical interpretation
of the idea due to Plefka [10, 11], and we call the expansion of the difference with respect to
w the Plefka expansion following Tanaka [5] who originally gave a similar interpretation in
the classical case. From the information geometrical viewpoint, the gist of this approach is
the fact that the Pythagorean relation (40) holds for the three points ρh,w, ρ̂m,w and ρ̂m,0 (see
figure 2) so that we have

D(ρ̂m,0‖ρh,w) − D(ρ̂m,w‖ρh,w) = D(ρ̂m,0‖ρ̂m,w). (61)

The problem is thus reduced to the expansion of D(ρ̂m,0‖ρ̂m,w) with respect to w. Noting
that ρ̂m,0 and ρ̂m,w are the points on the manifold A(m) for which the coupling coefficients
w = (wijst ) form a coordinate system, the expansion formula (41) with (42) is applied to yield
the Plefka expansion

D(ρ̂m,0‖ρ̂m,w) = 1

2

∑
IJ

gIJ wIwJ +
1

6

∑
IJK

hIJKwIwJ wK + · · · (62)
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with

hIJK = ∂̂I gJK + 

(e)
JK,I = 


(e)
IJ,K + 


(m)
IK,J + 


(e)
JK,I , (63)

where the indices I, J,K represent quadruplets of indices such as (i, j, s, t). Here, gIJ , 

(e)
IJ,K

and 

(m)
IJ,K are respectively the components of the BKM metric, the e-connection and the

m-connection of the manifold A(m), and ∂̂I denotes ∂
∂wI

for the coordinates (wI ) of A(m), all
evaluated at the point ρ̂m,0.

More specifically, it follows from (16) that

gIJ =
∫ 1

0
Tr

[
ρ̂λ(∂̂I log ρ̂)ρ̂1−λ(∂̂J log ρ̂)

]
dλ, (64)

where ρ̂ = ρ̂m,0 and ∂̂I log ρ̂ = ∂
∂wI

log ρ̂m,w

∣∣
w=0. By some calculations (see appendix), we

have

∂̂I log ρ̂ = (Xis − mis)(Xjt − mjt ) (65)

for I = (i, j, s, t). As for the third-order coefficients hIJK in (63), we first note that w = (wI )

is an e-affine coordinate system of A(m) as mentioned before and hence 

(e)
IJ,K = 0. As a

consequence, we have

hIJK = ∂̂I gJK = 

(m)
IK,J

= 2Re
∫ ∫

0�ν�λ�1
Tr

[
ρ̂ν(∂̂I log ρ̂)ρ̂λ−ν(∂̂J log ρ̂)ρ̂1−λ(∂̂K log ρ̂)

]
dν dλ, (66)

where we have invoked (21) and (22).
If we succeed in obtaining explicit expressions for gIJ , hIJK and if they are not too

complicated as functions of the mean variables m = (mis), we can take

D(ρ̂m,0‖ρh,w) − 1

2

∑
IJ

gIJ wIwJ

or

D(ρ̂m,0‖ρh,w) − 1

2

∑
IJ

gIJ wIwJ − 1

6

∑
IJK

hIJKwIwJ wK

as a substitute of D(ρ̂m,w‖ρh,w) = D(ρ̂m,0‖ρh,w)−D(ρ̂m,0‖ρ̂m,w) in equation (59) to improve
the naive mean-field approximation (60). See [12, 13] for the classical case in this direction. In
the quantum case, it is still a hard problem to carry out this program in spite of the remarkable
progress made by [11].

Before closing this section, we verify the equivalence between our discussion and the
original formulation of Plefka for expansion of the Gibbs potential. Let us define a function
χ : S2 → R by

χ(ρ)
def= ψ(ρ) −

∑
i,s

mis(ρ)his(ρ) (67)

= S(ρ) +
∑

i<j,s,t

µijst (ρ)wijst (ρ), ∀ ρ ∈ S2 (68)

where the second equality follows from (25) and φ(ρ) = −S(ρ). Noting that equation (24)
yields

dψ =
∑

α

ηαdθα =
∑
i,s

misdhis +
∑

i<j,s,t

µijstdwijst , (69)

14
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we obtain from equation (67) that

dχ = dψ −
∑
i,s

misdhis −
∑
i,s

hisdmis

=
∑

i<j,s,t

µijstdwijst −
∑
i,s

hisdmis. (70)

This shows that it is natural to represent χ as a function of independent variables (m,w)

by χ(ρ̂m,w), which corresponds to what is called the Gibbs potential in [10, 11]. Now, it is
immediate from (31) and (67) that, for any (m,w) = (mis, wijst ),

χ(ρ̂m,w) = S(ρ̂m,0) +
∑

i<j,s,t

mismjtwijst + D(ρ̂m,0‖ρ̂m,w). (71)

This implies that the expansions of χ(ρ̂m,w) and D(ρ̂m,0‖ρ̂m,w) with respect to w are equivalent
except for 0 th and first-order terms.

8. Discussion and conclusions

In this paper, we have derived the naive mean-field equations explicitly, followed by a
comprehensive discussion of the higher-order approximations for QBMs from the viewpoint
of information geometry. It has been shown that the fundamental concepts of information
geometry such as the e-, m-connections and dualistic structure of exponential families play
a major role. We have also established the correspondence of the information geometrical
quantities such as the metric and e-, m-connections to the coefficients of the Plefka expansion
and thus to higher-order approximations. Although our approach does not directly contribute
to the explicit calculation of the coefficients, it will be interesting and important to investigate,
for instance, the ingenious calculations of Plefka [11] for some higher-order terms in the light
of information geometry.

Finally, we mention some possible extensions of the present quantum information
geometrical formulation of the mean-field approximation beyond the QBMs. An immediate
application is to employ this method for the mean-field approximation of a state (1) with
k � 3. Another important extension is to consider the q-state quantum spin model in which
each element has a local Hilbert space C

q and the whole system corresponds to (Cq)⊗n. It
would be useful to find other applications of this framework for quantum statistical models.

Appendix. Derivation of equation (65)

It follows from (70) that

(
∂χ

∂wijst

)
ξ

= µijst = mismjt (when w = 0), (A.1)

(
∂χ

∂mis

)
ξ

= −his, (A.2)

where (·)ξ means that the partial differentiations are those with respect to the coordinate system
ξ = (m,w). Note that ∂̂I in (65) for I = (i, j, s, t) is

(
∂

∂wijst

)
ξ

evaluated at w = 0. Now, from
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equations (3) and (67), we obtain

log ρ̂m,w =
∑
ku

hkuXku +
∑
kluv

wkluvXkuXlv − ψ

=
∑
ku

hku(Xku − mku) +
∑
kluv

wkluvXkuXlv − χ (A.3)

and

∂̂I log ρ̂m,w =
∑
ku

(
∂hku

∂wI

)
ξ

(Xku − mku) + XisXjt −
(

∂χ

∂wI

)
ξ

. (A.4)

Here, (
∂hku

∂wI

)
ξ

= −
(

∂2χ

∂wI∂mku

)
ξ

(from equation (A.2))

= −
(

∂

∂mku

(
∂χ

∂wI

)
ξ

)
ξ

= −∂mismjt

∂mku

(from equation (A.1))

= −δikδsumjt − δjkδtumis .

Substituting this and (A.1) in (A.4), we have

∂̂I log ρ̂m,w = −(Xis − mis)mjt − (Xjt − mjt )mis + XisXjt − mismjt

= (Xis − mis)(Xjt − mjt ),

which completes the derivation.
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